Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae.

نویسندگان

  • Yu Wang
  • Fei Tao
  • Ping Xu
چکیده

Glycerol dehydrogenase (GDH) is an important polyol dehydrogenase for glycerol metabolism in diverse microorganisms and for value-added utilization of glycerol in the industry. Two GDHs from Klebsiella pneumoniae, DhaD and GldA, were expressed in Escherichia coli, purified and characterized for substrate specificity and kinetic parameters. Both DhaD and GldA could catalyze the interconversion of (3R)-acetoin/(2R,3R)-2,3-butanediol or (3S)-acetoin/meso-2,3-butanediol, in addition to glycerol oxidation. Although purified GldA appeared more active than DhaD, in vivo inactivation and quantitation of their respective mRNAs indicate that dhaD is highly induced by glycerol and plays a dual role in glycerol metabolism and 2,3-butanediol formation. Complementation in K. pneumoniae further confirmed the dual role of DhaD. Promiscuity of DhaD may have vital physiological consequences for K. pneumoniae growing on glycerol, which include balancing the intracellular NADH/NAD(+) ratio, preventing acidification, and storing carbon and energy. According to the kinetic response of DhaD to modified NADH concentrations, DhaD appears to show positive homotropic interaction with NADH, suggesting that the physiological role could be regulated by intracellular NADH levels. The co-existence of two functional GDH enzymes might be due to a gene duplication event. We propose that whereas DhaD is specialized for glycerol utilization, GldA plays a role in backup compensation and can turn into a more proficient catalyst to promote a survival advantage to the organism. Revelation of the dual role of DhaD could further the understanding of mechanisms responsible for enzyme evolution through promiscuity, and guide metabolic engineering methods of glycerol metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of mutation of 2,3-butanediol formation pathway on glycerol metabolism and 1,3-propanediol production by Klebsiella pneumoniae J2B.

The current study investigates the impact of mutation of 2,3-butanediol (BDO) formation pathway on glycerol metabolism and 1,3-propanediol (PDO) production by lactate dehydrogenase deficient mutant of Klebsiella pneumoniae J2B. To this end, BDO pathway genes, budA, budB, budC and budO (whole-bud operon), were deleted from K. pneumoniae J2B ΔldhA and the mutants were studied for glycerol metabol...

متن کامل

High Production of 2,3-butanediol by a Mutant Strain of the Newly Isolated Klebsiella pneumoniae SRP2 with Increased Tolerance Towards Glycerol

Biodiesel, a renewable fuel produced by transesterification of animal fats and vegetable oils, generates about 10% (v/v) of crude glycerol as a core byproduct. The high volume of this non bio-degradable glycerol is becoming of a great environmental and economical concern due to its worldwide ever-growing surplus. Herein we report a high production of 2,3-butanediol (2,3-BD) from pure and biodie...

متن کامل

Isolation and Molecular Identification of Klebsiella Pneumoniae Strains, Producing Diols from Glycerol

Among the promising bulk chemicals, 1,3-propanediol (1,3-PD) and 2,3-butanediol (2,3-BD) are two bio-based diols, which have a wide range of applications in cosmetic and food industry, as antifreezes, lubricants, fuel additives, as well as in the production of polymers. The possibility to obtain diols from the waste glycerol is topical by two reasons. First, the waste glycerol is received in la...

متن کامل

High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1

BACKGROUND 2,3-Butanediol (2,3-BDO) is a promising bio-based chemical because of its wide industrial applications. Previous studies on microbial production of 2,3-BDO has focused on sugar fermentation. Alternatively, biodiesel-derived crude glycerol can be used as a cheap resource for 2,3-BDO production; however, a considerable formation of 1,3-propanediol (1,3-PDO) and low concentration, produ...

متن کامل

Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae.

The fed-batch fermentation of glycerol to 1,3-propanediol by Klebsiella pneumoniae displayed an unusual dynamic behavior that can be clearly divided into four distinct phases according to cell growth and CO(2) evolution rate. Metabolism changed significantly during the different phases as reflected by the varied specific rates of substrate consumption and product formation. An assay of activiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 289 9  شماره 

صفحات  -

تاریخ انتشار 2014